

MiSE/RER/Stogit S.p.A.: Protocollo Operativo – Attività di sperimentazione degli indirizzi e linee guida per il monitoraggio della concessione "Minerbio Stoccaggio", Regione Emilia-Romagna, DGR 11 Aprile 2016, N. 488

Concessione di stoccaggio di gas naturale "Minerbio stoccaggio" (BO) Struttura Preposta al Monitoraggio Anno di esercizio 2018 Relazione Trimestrale N.3

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

Progetto: SPERIMENTAZIONE ILG MINERBIO STOCCAGGIO (Codice progetto: 913; Codice CUP: D81I18000300004)

UR-Milano / UR-Bologna

Dicembre 2018

INDICE

1.	Intr	oduzi	one	1
2.	Мо	nitora	ggio sismico	2
	2.1	Dom	ini di rilevazione e rete di monitoraggio sismico integrata (RSIMS)2
	2.2	Anali	si di rumore sismico ambientale	6
	2.3	Sism	icità registrata	16
	2.4	Conc	lusioni	20
3.	Мо	nitora	ggio delle deformazioni del suolo da stazioni GPS in continuo	21
	3.1	Aggio	ornamento della soluzione geodetica	21
		3.1.1	Analisi della qualità del dato	22
		3.1.2	Elaborazione dei dati e serie temporale di spostamento	23
		3.1.3	Stima della deformazione post-sismica e calcolo delle velocità aggiornate	24
	3.2	Conc	lusioni	29
Bik	oliogr	rafia		30

1. Introduzione

La concessione di stoccaggio di gas naturale "Minerbio Stoccaggio", assegnata dal Ministero dello Sviluppo Economico (MiSE) a STOGIT S.p.A. (da qui in poi denominato "Concessionario"), interessa un'area di 68.6 km² situata in provincia di Bologna, principalmente nel territorio comunale di Minerbio (MiSE-DGS-UNMIG, 2017). La concessione, ubicata circa 18 km a nord-est di Bologna, viene a trovarsi in una zona caratterizzata da intensa attività antropica, legata sia ad attività produttive che alla presenza di importanti vie di comunicazione. Il giacimento di stoccaggio, situato ad una profondità media di 1270 m, appartiene alla categoria dei giacimenti a gas esauriti (*Depleted Field*) ossia sfruttato in passato durante la fase di produzione primaria protrattasi sino al 1971 e, dal 1975, convertito all'attività di stoccaggio (Fig. 1).

Il monitoraggio della sismicità dell'area, unitamente a quello delle deformazioni del suolo e delle pressioni di poro, viene effettuato dal Concessionario per la verifica delle condizioni di sicurezza di esercizio dei giacimenti anche in riferimento alle indicazioni contenute nel documento MiSE "Indirizzi e linee guida per il monitoraggio della sismicità, delle deformazioni del suolo e delle pressioni di poro nell'ambito delle attività antropiche" (MiSE-DGS-UNMIG, 2014), da qui in poi denominato "ILG". Quest'ultimo prescrive in particolare l'individuazione di una struttura preposta al monitoraggio (denominata "SPM") e lo svolgimento di un'attività di sperimentazione del monitoraggio di attività antropiche come, ad esempio, lo stoccaggio di gas naturale in sotterraneo. In data 5/5/2016, il "Protocollo Operativo – Attività di Sperimentazione degli Indirizzi e Linee Guida per il monitoraggio della concessione *Minerbio Stoccaggio*", sottoscritto da MiSE, Regione Emilia Romagna (RER) e Concessionario, individua l'Istituto Nazionale di Geofisica e Vulcanologia (INGV) come SPM (RER, 2016a; 2016b). Il Protocollo Operativo, avviato ufficialmente in data 11/7/2016 per la durata di due anni, viene poi attuato mediante la stipula di una convenzione della durata di un anno tra Comune di Minerbio e INGV, avviata ufficialmente in data 17/5/2018 (INGV, 2018a).

L'attività precedente l'attivazione di quest'ultima convenzione è stata rendicontata nel rapporto "Concessione di stoccaggio di gas naturale Minerbio Stoccaggio (BO). SPM - Monitoraggio Sismico – Anno di esercizio 2017 – Relazione N.01" (INGV-MI, 2017a), nel documento di sintesi inviato da INGV a MiSE, RER e Concessionario in data 27/7/2017 (INGV-MI, 2017b) e nel documento "Sintesi attività svolta nel periodo Luglio-Dicembre 2017 nell'ambito del Protocollo Operativo" (INGV-MI, 2018a).

A partire da Gennaio 2018, l'attività svolta dalla SPM viene rendicontata mediante relazioni trimestrali corredate da allegati tecnici che illustrano le singole attività di monitoraggio. L'attività condotta nel primo trimestre 2018 è stata dunque sintetizzata nella Relazione Trimestrale N.1 (INGV, 2018b) e, in particolare, gli allegati A e B della suddetta relazione illustrano rispettivamente il monitoraggio sismico (INGV, 2018c) e il monitoraggio delle deformazioni del suolo da stazioni GPS in continuo (INGV, 2018d). L'attività svolta nel secondo trimestre è stata rendicontata nella Relazione Trimestrale N.2 (INGV, 2018e), mentre il presente rapporto descrive l'attività di monitoraggio sismico relativa al periodo Luglio-Settembre 2018 e aggiorna al 30 Settembre 2018 la soluzione geodetica presentata nell'allegato B della Relazione Trimestrale N.1 (INGV, 2018d).

Figura 1. Concessione di stoccaggio di gas naturale "Minerbio Stoccaggio" (rettangolo blu) e proiezione in superficie del contatto gas-acqua (GWC) originario del *reservoir* (linea gialla). Il contatto GWC è localizzato a 1370 m di profondità e corrisponde ad un'area di circa 8 km². Vengono mostrati i confini dei comuni interessati dalla concessione di stoccaggio. La linea chiara in alto a destra indica il confine tra le provincie di Bologna e Ferrara.

2. Monitoraggio sismico

2.1 Domini di rilevazione e rete di monitoraggio sismico integrata (RSIMS)

I domini di rilevazione per il monitoraggio sismico sono stati definiti nei precedenti rendiconti del Protocollo Operativo (INGV-MI, 2017a; 2018c) sulla base di una dettagliata analisi dell'assetto geostrutturale dell'area e considerando la geometria del *reservoir* in termini di profondità ed estensione della superficie del contatto GWC (INGV-MI, 2017a). Le Fig. 2 e 3 mostrano rispettivamente le proiezioni dei domini di rilevazione in superficie e lungo la sezione C-C' della Carta Sismotettonica della Regione Emilia Romagna (Boccaletti et al., 2004).

Figura 2. Proiezione in superficie dei domini di rilevazione interno (DI) ed esteso (DE) (box rosso e box blu, rispettivamente). DI e DE hanno dimensioni di (10 x 10 x 5) km^3 e (22 x 22 x 11) km³ rispettivamente. Vengono mostrati la proiezione in superficie del contatto GWC, i confini dei comuni interessati dalla concessione "Minerbio Stoccaggio" e la posizione di C, il punto centrale delle proiezioni in superficie dei domini di rilevazione, di coordinate: 44.623 N; 11.490 E. La linea blu che affianca il lato ovest del dominio interno corrisponde alla traccia della sezione C-C' di Boccaletti et al. (2004)., Le dimensioni lineari del contatto GWC, situato a 1370 m di profondità, sono di circa 2 e 6 km nelle direzioni NE-SO NO-SE, е rispettivamente.

La rete per il monitoraggio della microsismicità è stata completata in data 20/4/2018 con l'installazione delle ultime due stazioni della Rete Microsismica Minerbio Stoccaggio (RMMS). In tal modo, la RMMS risulta essere costituita da 4 stazioni in superficie (MI01; MI02; MI03; MI06) e 4 stazioni in pozzetto (MI04; MI05; MI08; MI10) equipaggiate con sensori velocimetrici a corto periodo. Il sensore da pozzo di MI04 è installato a 100 m di profondità mentre quelli di MI05, MI08 e MI10 sono installati ad una profondità di 150 m. MI04 è dotata anche di un accelerometro, installato in superficie. La RMMS così realizzata corrisponde alla configurazione di rete RP2018 illustrata nell'allegato A della Relazione Trimestrale N.1 (INGV, 2018c). La RMMS comprende 5 stazioni all'interno della proiezione in superficie di DI, installate a distanze comprese tra 0.9 e 3.9 km da C (punto centrale delle proiezioni in superficie dei domini di rilevazione) e 3 stazioni all'interno della proiezione in superficie di DE non inclusa in DI, installate a distanze comprese tra 7.2 e 8.2 km da C (Fig.4).

Figura 4. Configurazione della Rete Microsismica "Minerbio Stoccaggio". I sensori velocimetrici in pozzetto sono installati alle profondità di 100 m (MI04) e di 150 m (MI05, MI08 e MI10). Vengono indicate le proiezioni in superficie della linea di contatto GWC (linea arancione), del Dominio Interno di rilevazione (figura quadrata rossa) e del Dominio Esteso di rilevazione (figura quadrata blu). La linea blu tratteggiata corrisponde alla sezione C-C' della Carta Sismotettonica della Regione Emilia Romagna (Boccaletti et al., 2004).

Come indicato in MiSE-DGS-UNMIG (2014), la RMMS viene integrata dalle stazioni delle reti regionali operanti nell'area. A tal fine sono state considerate 12 stazioni della Rete Sismica Nazionale (RSN) (INGV-CNT (2018a) e 2 stazioni del Progetto AlpArray (AlpArray, 2016; INGV, 2016). Ad eccezione della stazione AlpArray A307A, collocata all'interno della proiezione in superficie di DI ad una distanza di 6.0 km da C, le stazioni che integrano la RMMS sono installate a distanze comprese fra 25 e 55 km circa da C. Complessivamente sono installati 8 sensori velocimetrici a corto periodo (NDIM, CAVE, RAVA, SERM, IMOL, ZCCA, MTRZ, BRIS) e 10 accelerometri (NDIM, SERM, FERS, MODE, CMPO, FAEN, BRIS, IMOL, MTRZ, ZCCA). 6 siti sono equipaggiati mediante doppio sensore (SERM, IMOL, MTRZ, ZCCA, BRIS, NDIM) e fra questi, SERM e IMOL sono dotati di sensore velocimetrico installato in pozzetto (a 135 e 175 m di profondità, rispettivamente). Le due stazioni AlpArray sono equipaggiate con sensori velocimetrici broad-band. La disposizione della Rete Sismica Integrata Minerbio Stoccaggio (RSIMS) viene mostrata in Fig. 5 mentre in Tab. 1 vengono riportate le caratteristiche strumentali. Le stazioni della RSN, del progetto AlpArray e della RMMS sono contrassegnante dalle sigle "IV"; "Z3" e "MI", rispettivamente.

Figura 5. Stazioni della Rete Sismica Integrata Minerbio Stoccaggio (RSIMS). I sensori velocimetrici in pozzetto sono installati a profondità variabili tra 100 e 200 m (cfr. Tab. 1). Vengono indicate le proiezioni in superficie della linea di contatto GWC (linea gialla), del Dominio Interno di rilevazione (figura quadrata rossa) e del Dominio Esteso di rilevazione (figura quadrata blu). La linea blu tratteggiata corrisponde alla sezione C-C' della Carta Sismotettonica della Regione Emilia Romagna (Boccaletti et al., 2004).

Rete	Sigla Stazione	Lat. N (°)	Lon. E (°)	Quota (m)	Profondità (m)	Località	Distanza (km)	Azimuth (°)	Acquisitore	Sensore 1	Sensore 2
MI	MI01	44.64014	11.49142	9	0	Minerbio - Fondo Fiumicello	1.9	3	Solgeo Dymas 24 Master	LE3D-1S	_
MI	MI02	44.60820	11.52558	9	0	Minerbio - San Martino in Soverzano	3.3	120	Solgeo Dymas 24 Master	LE3D-1S	_
MI	MI03	44.60666	11.45678	15	0	Minerbio – Spettoleria	3.2	235	Solgeo Dymas 24 Master	LE3D-1S-MKIII	_
MI	MI04	44.61596	11.49631	11	100	Minerbio – Tintoria	0.9	147	Solgeo Dymas 24 Master	LE3D-BH	SARA SA10 2G
MI	MI05	44.64411	11.45093	9	150	Bentivoglio – Saletto	3.9	307	Solgeo Dymas 24 Master	SARA SS10 BHV	_
MI	MI06	44.61623	11.40021	17	0	Bentivolgio – Santa Maria in Duno	7.2	264	Solgeo Dymas 24 Master	SARA S02	LE3D-1S-MKIII
MI	MI08	44.55698	11.53678	18	150	Budrio – Riccardina	8.2	153	Solgeo Dymas 24 Master	SARA SS10 BHV	-
MI	MI10	44.67853	11.53648	7	150	Malalbergo- Boschi	7.2	31	Solgeo Dymas 24 Master	SARA SS10 BHV	_
IV	BRIS	44.22454	11.76657	260	0	Brisighella	49.5	153	GAIA2	TRILLIUM-40S	EPISENSOR-2G
IV	CAVE	44.86580	11.00310	18	0	Cavezzo	47.1	305	GAIA2	TRILLIUM-120S	_
IV	CMPO	44.58080	11.80560	2	0	Campotto Po	25.5	100	GAIA2	_	EPISENSOR-2G
IV	FAEN	44.28950	11.87700	41	0	Faenza	48.2	140	GAIA2	-	EPISENSOR-2G
IV	FERS	44.90350	11.54060	3	0	Ferrara	31.4	7	GAIA2	_	EPISENSOR-2G
IV	IMOL	44.35955	11.74248	27	175	Imola	35.5	145	GAIA2	LE3D-BH	EPISENSOR-2G
IV	MODE	44.62972	10.94917	41	0	Modena	42.9	271	GAIA2	_	EPISENSOR-2G
IV	MTRZ	44.31280	11.42480	570	0	Monterenzio	34.9	188	TRIDENT	TRILLIUM-40S	EPISENSOR-2G
IV	NDIM	44.88730	10.89870	19	0	Novi di Modena	55.3	302	GAIA2	TRILLIUM-40S	EPISENSOR-2G
IV	RAVA	44.75587	11.11880	15	0	Ravarino	32.9	297	GAIA2	LE3D-5S	_
IV	SERM	45.00997	11.29582	7	135	Sermide	45.7	340	GAIA2	LE3D-BH	EPISENSOR-2G
IV	ZCCA	44.35085	10.97650	700	0	Zocca	50.8	234	GAIA2	TRILLIUM-40S	EPISENSOR-2G
Z3	A307A	44.66076	11.43631	9	0	Bentivoglio	6.0	315	REFTEK130	TRILLIUM-120C	_
Z3	A308A	44.58249	12.00568	-2	0	Longastrino	41.2	96	REFTEK130	TRILLIUM-120C	_

Tabella 1. Rete Sismica Integrata Minerbio Stoccaggio (RSIMS): stazioni della Rete Microsismica Minerbio Stoccaggio gestita dal Concessionario (sigla "MI"), installate all'interno della proiezione superficiale del Dominio Esteso di rilevazione; stazioni della Rete Sismica Nazionale (sigla "IV") e stazioni del progetto AlpArray (sigla "Z3"). La stazioni IV e Z3 sono installate in un'area di (110 x 110) km² centrata attorno alla posizione del giacimento "Minerbio Stoccaggio". In particolare vengono riportate la quota dei sensori e la profondità dei sensori velocimetrici, il tipo di acquisitore e i sensori installati, la distanza e l'azimuth rispetto al punto C di Fig.2. Si noti che gli accelerometri sono tutti installati in superficie. Il 27/06/2018, il sensore 1 della stazione MI04 è stato sostituito con un sensore velocimetrico caratterizzato dalla medesima frequenza propria (1 Hz) modello SARA SS10BHV.

A partire da Marzo 2018 i segnali registrati dalle stazioni riportate in Tab.1 vengono acquisiti in tempo reale su server dedicato presso INGV-MI. L'acquisizione in tempo reale viene realizzata mediante il software Seedlink (IRIS, 2018a) utilizzato dai più importanti centri di ricerca sismologica e ampiamente collaudato da INGV. Presso INGV-MI è stato creato e configurato il nodo master dedicato all'acquisizione dati Seedlink, nel quale confluiscono direttamente i dati delle stazioni della RSN e di AlpArray che compongono la RSIMS (cfr. Tab.1) e i dati provenienti dal nodo Seedlink, realizzato presso il Concessionario, che raccoglie i segnali trasmessi dalle stazioni della RMMS. Questo tipo di configurazione permette di implementare facilmente la RMMS con eventuali nuove stazioni. Come precedentemente rendicontato, l'attività svolta nel primo semestre 2018 ha consentito di completare il popolamento dell'archivio delle forme d'onda registrate in continuo da tutte le stazioni della rete, anche relativamente ai periodi precedenti la realizzazione del collegamento in tempo reale. Attualmente, l'archivio risulta quindi completo a partire da Maggio 2015 e costantemente aggiornato in tempo reale a partire da Marzo 2018. I dati registrati in continuo dalle stazioni della RSIMS sono archiviati nel formato miniSEED (IRIS, 2018b), affermatosi da tempo in ambito scientifico come formato standard per la trasmissione in tempo reale dei dati sismici.

Sul server di acquisizione sono stati installati il software PQLX (USGS, 2018), che consente di effettuare in tempo reale una prima analisi di qualità delle forme d'onda acquisite, e un sistema di riconoscimento automatico di segnali transienti in coincidenza temporale (trigger off-line), per l'individuazione di eventuali

eventi sismici (Cattaneo et al., 2011). A partire dalle registrazioni in continuo, in corrispondenza di ogni evento riconosciuto il sistema di trigger produce una serie di tracce "tagliate" appartenenti alle stazioni che sono risultate in coincidenza rispetto all'evento stesso. Mediante un ulteriore software (SacPicker - Spallarossa et al., 2011), ogni evento riconosciuto viene poi rivisto manualmente per definirne l'eventuale natura sismica e calcolarne la magnitudo e i parametri di localizzazione.

A scopo di monitoraggio preventivo, a valle del sistema di acquisizione è stato comunque installato e configurato anche il software Earthworm (Earthworm Central, 2016) che consente il riconoscimento automatico degli eventi sismici in tempo reale, la localizzazione degli eventi e il calcolo della magnitudo.

2.2 Analisi di rumore sismico ambientale

Nel periodo Luglio-Settembre 2018 è proseguita l'analisi della qualità delle forme d'onda registrate dalle stazioni della RSIMS mediante la stima del rumore sismico ambientale. A tal fine è stato impiegato il software PQLX (USGS, 2018), che utilizzando l'algoritmo sviluppato da McNamara e Buland (2004) per calcolare lo spettro di potenza (PSD) del segnale registrato in continuo, analizza finestre della durata di un'ora, con sovrapposizione del 50%, ottenendo in tal modo 48 curve di PSD per ogni giorno di registrazione. Le finestre vengono sovrapposte allo scopo di diminuire la varianza della stima. Le Probability Density Functions (PDF) di PSD possono poi essere stimate scegliendo il periodo di funzionamento della stazione. In questo rapporto le PDF vengono calcolate per il periodo Luglio-Settembre 2018 considerando separatamente le stime orarie diurne e quelle notturne. Le PDF così ottenute vengono poi confrontate con le curve standard di riferimento NHNM (New High Noise Model) e NLNM (New Low Noise Model) ricavate da Peterson (1993). Per il periodo preso in considerazione sono state ottenute più di 4300 curve PSD per ciascuna stazione; in generale, l'andamento delle PDF calcolate per il terzo trimestre 2018 è del tutto in linea con i risultati ottenuti nei trimestri precedenti (INGV, 2018c; 2018e). Le PDF di PSD, calcolate con le componenti verticali del moto, sono mostrate nelle figure da 6 a 13. Ogni figura è suddivisa in 6 pannelli, realizzati utilizzando gli strumenti di analisi messi a disposizione da PQLX. A partire dalla PDF ottenuta per tutto il periodo analizzato (pannello A0) viene operata una selezione delle PSD che hanno contribuito alla PDF stessa (pannello A0 - riquadri colorati in rosso e in giallo) allo scopo di visualizzare le tracce corrispondenti (pannello B0), le PDF corrispondenti (pannelli A1 e A2) e i corrispondenti intervalli temporali (pannelli B1 e B2). Nei pannelli B1 e B2 vengono riportati in ascissa i giorni giuliani e in ordinata il tempo GMT. I segmenti verticali indicano gli intervalli temporali corrispondenti alle PSD selezionate. I pannelli A1 e B1 si riferiscono alla selezione indicata dal riquadro colorato in rosso, corrispondente alle PSD più rumorose, mentre i pannelli A2 e B2 si riferiscono alla selezione indicata dal riquadro colorato in giallo, corrispondente alle PSD meno rumorose. Il pannello BO si riferisce alle serie temporali selezionate dal riguadro rosso. Di seguito viene riportata l'analisi di dettaglio relativa ad ogni singola stazione.

MI01

Nel pannello AO risulta ben visibile la presenza di uno sdoppiamento della PDF per frequenze maggiori di 0.7 Hz. Selezionando il ramo superiore (rettangolo rosso) si nota che le relative PSD (cfr. pannello A1) sono generate nelle ore diurne, mediamente dalle 05:00 GMT alle 18:00 GMT (cfr. pannello B1). Il ramo inferiore, selezionato con il rettangolo giallo indicato nel pannello AO, è invece relativo alle PSD generate mediamente nelle ore notturne e durante i giorni festivi (cfr. pannello B2). Come si può notare, i pannelli B1 e B2 sono tra loro complementari. Mediamente, per frequenze > 1 Hz i livelli di rumore osservati durante le ore diurne si attestano attorno a circa -105 dB, con una variazione di circa 15 dB rispetto ai livelli di rumore che si osservano durante la notte.

MI02

Come per MI01, per frequenze > 1 Hz i livelli di rumore osservati durante le ore diurne si attestano attorno a circa -105 dB. La variazione giorno/notte risulta invece leggermente superiore, pari a circa 20 dB.

MI03

La stazione MI03 si conferma più rumorosa delle precedenti: questa caratteristica risulta ben visibile osservando il ramo inferiore della PDF per frequenze > 1Hz (cfr. pannello A0). Le corrispondenti curve di PSD, che si riferiscono alle ore notturne (cfr. pannello B2), risultano infatti mediamente superiori alle curve NHNM di Peterson (1993). Per questa stazione, la differenza giorno/notte è di circa 12 dB per frequenze > 1Hz. Si noti che nel periodo 10/08/2018 – 20/08/2018 (giorni giuliani compresi tra 222 e 232) è possibile osservare un abbassamento dei livelli medi di rumore, dovuto probabilmente alla diminuzione delle attività antropiche che caratterizza questo periodo festivo. Infatti, il pannello B2, ottenuto selezionando la parte di PDF corrispondente ai livelli più bassi di energia, mostra nel suddetto periodo la presenza di segmenti continui che si estendono per tutta la durata del giorno.

MI04

L'analisi della PDF ottenuta con le registrazioni della stazione MI04, equipaggiata con sensore in pozzetto a 100 m di profondità, evidenzia la presenza del tipico sdoppiamento della PDF per frequenze maggiori di 1.0 Hz, dovuto alla variazione giorno/notte del livello medio di rumore sismico ambientale. La stazione è caratterizzata da un livello medio di rumore piuttosto elevato che, per frequenze > 1 Hz si attesta attorno a -100 dB, e mostra una variazione di circa 20 dB rispetto ai livelli di rumore osservati durante la notte. Inoltre, sulla componente verticale si può notare la presenza di una curva con andamento rettilineo per frequenze minori di circa 5 Hz, dovuta alla presenza di segnali simili a spikes. Come si vede dal pannello B1, questa fonte di disturbo è presente a partire dal giorno 260 (17/09/2018). A partire dal giorno 267, la stazione risulta invece non acquisita. Questa anomalia di funzionamento è stata riscontrata solo sulla componente verticale, mentre le componenti orizzontali, correttamente funzionanti, hanno mostrato livelli medi di rumore ambientale in linea con i risultati del trimestre precedente.

MI05

Il sensore della stazione MI05 è installato in pozzetto ad una profondità di 150 m. Le differenze giorno/notte delle curve PDF sono decisamente meno evidenti (5 dB circa) rispetto a quelle osservate con MI04, probabilmente a causa della maggior profondità di installazione del sensore stesso. Durante le ore diurne, per frequenze > 1 Hz il livello di rumore osservato si attesta mediamente attorno a -110 dB.

MI06

La stazione, equipaggiata con sensore posto in superficie, risulta decisamente rumorosa, con livelli di rumore che mediamente risultano superiori alla curva NHNM di circa 12 dB attorno a 2 Hz. La variazione giorno/notte risulta minima, circa 5 dB attorno a 2 Hz.

MI08

La stazione MI08, equipaggiata con sensore in pozzetto a 150 m di profondità, risulta più silenziosa delle precedenti, con una differenza tra i livelli di rumore osservati durante il giorno e durante la notte di circa 5 dB attorno a 1 Hz. Isolando la parte più energizzata dalla PDF, per frequenze comprese tra 1 e 3 Hz si misurano livelli di PSD attorno a -115 dB, leggermente minori o uguali ai livelli delle curve di riferimento NHNM.

MI10

La stazione MI10, equipaggiata con sensore in pozzetto a 150 m di profondità, presenta dei livelli di rumore molto simili a quelli della stazione MI08. Non risulta evidente una chiara differenza tra i livelli di rumore giorno/notte e, per frequenze comprese tra 1 e 3 Hz, le PSD sono mediamente inferiori alla curva di riferimento NHNM di una quantità variabile tra 10 e 25 dB.

Fig. 6. Pannelli AO, A1 e A2: densità di probabilità (PDF) dello spettro di potenza (PSD) del rumore sismico ambientale registrato nel periodo 1/7/2018 - 30/9/2018 dalla stazione MIO1 (componente verticale del moto). I valori spettrali, rappresentati in funzione del periodo, si riferiscono allo spettro di potenza (PSD), misurato in $(m/s^2)^2/Hz$ ed espresso in dB, di un segnale di accelerazione della durata di un'ora. Per calcolare il PSD vengono utilizzate finestre di segnale con sovrapposizione del 50%. La scala di colore (in ordine crescente dal viola al rosso) rappresenta la percentuale dei campioni di PSD osservati nel periodo di tempo esaminato. Le linee grigie rappresentano le curve NHNM (New High Noise Model) e NLNM (New Low Noise Model), in alto e in basso rispettivamente, ottenute da Peterson (1993). Le linee chiare tratteggiate rappresentano il 10° e il 90° percentile della funzione di distribuzione. Pannello BO: serie temporali corrispondenti alla selezione 1 (box rosso riportato sul pannello AO). Gli intervalli orari corrispondenti alle selezioni 1 (box rosso – pannello AO) e 2 (box giallo – pannello AO) sono indicati come segmenti verticali nei pannelli B1 e B2 rispettivamente. L'ascissa e l'ordinata di entrambi i pannelli riportano rispettivamente il giorno giuliano e il tempo GMT.

Fig. 7. Come in Fig. 6 per il rumore sismico ambientale registrato nel periodo 1/7/2018 – 30/9/2018 dalla stazione MI02 (componente verticale del moto).

Fig. 8. Come in Fig. 6 per il rumore sismico ambientale registrato nel periodo 1/7/2018 – 30/9/2018 dalla stazione MI03 (componente verticale del moto).

Fig. 9. Come in Fig. 6 per il rumore sismico ambientale registrato nel periodo 1/7/2018 – 30/9/2018 dalla stazione MI04 (componente verticale del moto).

Fig. 10. Come in Fig. 6 per il rumore sismico ambientale registrato nel periodo 1/7/2018 – 30/9/2018 dalla stazione MI05 (componente verticale del moto).

Fig. 11. Come in Fig. 6 per il rumore sismico ambientale registrato nel periodo 1/7/2018 – 30/9/2018 dalla stazione MI06 (componente verticale del moto).

Fig. 12. Come in Fig. 6 per il rumore sismico ambientale registrato nel periodo 1/7/2018 – 30/9/2018 dalla stazione MI08 (componente verticale del moto).

Fig. 13. Come in Fig. 6 per il rumore sismico ambientale registrato nel periodo 1/7/2018 – 30/9/2018 dalla stazione MI10 (componente verticale del moto).

2.3 Sismicità registrata

La micro-sismicità dell'area è stata monitorata utilizzando i segnali registrati dalla RSIMS nel periodo 1/7/2018 – 30/9/2018 e acquisiti nel medesimo periodo presso INGV-MI. A tal fine è stata applicata una procedura di analisi che consiste di due fasi successive:

- 1) mediante un sistema di trigger off-line basato su un algoritmo di tipo STA/LTA che utilizza i dati dell'archivio delle forme d'onda in continuo (Cattaneo et al., 2011), è stato prodotto automaticamente un data-set di segnali transienti in coincidenza temporale (eventi).
- mediante il software SacPicker (Spallarossa et al., 2011), ogni evento è stato processato manualmente al fine di identificarne l'eventuale natura sismica e, in caso affermativo, di stimarne la localizzazione e la magnitudo.

I parametri del trigger sono stati stabiliti mediante numerosi test effettuati con i dati registrati dalla RSIMS nel periodo 1/1/2017 – 31/12/2017, tenendo conto degli obiettivi del monitoraggio microsismico previsti dal Protocollo Operativo (RER, 2016a; 2016b). Trattandosi di un data-set limitato costituito da eventi che devono essere sottoposti ad una fase di elaborazione manuale, si è deciso di applicare parametri di trigger che permettessero di individuare anche eventi (eventualmente non sismici) caratterizzati da rapporto segnale/rumore non particolarmente elevato. Questa scelta, operata allo scopo di sfruttare al massimo le capacità di detezione della rete, ha condotto a definire i seguenti parametri: LTA = 30 s; STA = 1 s; soglia trigger (STA/LTA) = 3; finestra di ricerca dei trigger in coincidenza = 3 s; numero minimo di stazioni per l'identificazione di un evento = 3. L'applicazione dell'algoritmo STA/LTA è stata effettuata su segnali filtrati passa-banda nell'intervallo 2-25 Hz considerando esclusivamente le stazioni dotate di sensore velocimetrico. In questa fase di sperimentazione degli ILG si è deciso infatti di non utilizzare gli accelerometri eventualmente installati nelle stazioni che vanno a completare la RMMS a causa del rapporto segnale/rumore non particolarmente elevato che caratterizza tali sensori.

L'applicazione ai dati del periodo 1/7/2018 - 30/9/2018 della fase 1) della procedura di cui sopra, ha consentito l'individuazione di 225 eventi. L'applicazione della fase 2) ha quindi permesso di identificare come eventi sismici 43 di essi, mentre i rimanenti sono stati catalogati come segnali transienti causati da disturbi di natura antropica o rumore ambientale. Dei 43 eventi sismici riconosciuti, 40 sono presenti nel catalogo degli eventi registrati dalla RSN (INGV-CNT, 2018b).

Al fine di caratterizzare la sismicità registrata il catalogo degli eventi sismici riconosciuti è stato integrato con le informazioni desunte dal catalogo della RSN e completato con il risultato delle elaborazioni effettuate soprattutto sugli eventi non presenti nel catalogo nazionale. E' stato utilizzato lo schema riportato in Tab.2 operando una prima suddivisione fra eventi contenuti nel catalogo della RSN (A) ed eventi non contenuti nel medesimo catalogo (B). I primi sono stati successivamente suddivisi nelle tipologie A0, A1, A2 e A3 a seconda del valore della distanza ipocentrale, R, considerando le distanze di riferimento $R_1 = 20$ km e $R_2 = 50$ km. Il valore di R_1 approssima per eccesso la massima dimensione lineare del volume DE. Le tipologie A1 e A2, caratterizzate entrambe dalla condizione ($20 \le R < 50$) km vengono distinte in base alla stazione del primo arrivo P, la quale può appartenere o meno alla rete microsismica (RMMS). Gli eventi non contenuti nel catalogo della RSN vengono invece suddivisi nelle tipologie B0, B1 e B2 a seconda che il primo arrivo P venga osservato ad una stazione che appartiene o meno alla RMMS e a seconda del numero di coppie di fasi dirette P ed S chiaramente osservabili. Nel caso in cui la prima stazione appartenga alla RMMS, con meno di 4 coppie di fasi osservate l'evento viene ritenuto non localizzabile a causa del non sufficientemente elevato rapporto segnale/rumore. In questo caso viene classificato come B0 mentre in caso contrario viene classificato come B1. La tipologia B2 si riferisce invece a eventi non catalogati dal bollettino nazionale ma con il primo arrivo P osservato ad una stazione non appartenente alla RMMS. Gli eventi appartenenti alle tipologie A0, A1 e B1 vengono quindi rilocalizzati (A0, A1) o localizzati (B1) mediante SacPicker (Spallarossa et al., 2011) che fornisce anche una stima della magnitudo locale (cfr. Tab.2 - colonna 4). Il risultato finale della procedura consiste quindi nella suddivisione di tutti gli eventi sismici in 4 diverse classi (Tab.2 - colonna 5) definite sulla base dell'appartenenza ai domini di rilevazione: classe 0 per eventi non localizzabili; classe 1 per eventi inclusi in DI; classe 2 per eventi compresi fra DI e DE; classe 3 per eventi esterni a DE. Le possibili occorrenze prodotte dall'applicazione della procedura sopra descritta sono riportate in Tab.3, nella quale i parametri di localizzazione e magnitudo (colonne 2 - 6) vengono stimati riportando i dati contenuti nel catalogo della RSN (A2, A3) o rilocalizzando gli eventi mediante SacPicker (A0, A1, B1).

	Apparte al cata della	enenza alogo RSN	Tipologia evento	Rilocalizzazione	Classe evento
ID	SI	(A)	A0: R < 20 km	SI	1; 2; (3)
			A1: (20 ≤ R < 50) km ; primo arrivo P: MIxx	SI	1; 2; 3
			A2: (20 \leq R < 50) km ; primo arrivo P: XXXX \neq MIxx	NO	3
			A3: R ≥ 50 km	NO	3
	NO	(B)	B0: primo arrivo P: MIxx; N < 4	NO	0
			B1: primo arrivo P: MIxx; N ≥ 4	SI	1; 2; 3
			B2: primo arrivo P: XXXX ≠ MIxx	NO	3

Tabella 2. Schema di classificazione degli eventi sismici registrati dalla RSIMS (vedi testo). Stazioni della RMMS: MIxx; stazioni non appartenenti alla RMMS: XXXX. N indica il numero minimo di coppie di primi arrivi P ed S osservate.

ID_Detector	То	Lat	Lon	h (km)	Mag	T-Mag	D (km)	R (km)	Num. coppie di fasi S; P	Nome prima stazione	S-P prima stazione (s)	Nome prime 2 stazioni successive	Tipologia evento	Classe evento
		S 8					da Minerbio	da Minerbio	RSIMS	RSIMS	RSIMS	RSIMS		
YYYYMMDDhhmmxx	YYYY-MM-DD hh:mm.ss.ssssss	XX.XXXX	xx.xxx	XX.X	X.X	Мх	D	R < 20	N≥4	Mixx	X.XX	XXXX; XXXX	AO	1
YYYYMMDDhhmmxx	YYYY-MM-DD hh:mm.ss.ssssss	XX.XXXX	XX.XXX	XX.X	X.X	Mx	D	R < 20	N≥4	Mixx	X.XX	XXXX; XXXX	AO	2
YYYYMMDDhhmmxx	YYYY-MM-DD hh:mm.ss.ssssss	XX.XXXX	xx.xxx	XX.X	X.X	Mx	D	$20 \le R \le 50$	N≥4	Mixx	X.XX	XXXX; XXXX	A1	1
YYYYMMDDhhmmxx	YYYY-MM-DD hh:mm.ss.ssssss	XX.XXXX	XX.XXX	XX.X	X.X	Mx	D	20 ≤ R < 50	N≥4	Mixx	X.XX	XXXX; XXXX	A1	2
YYYYMMDDhhmmxx	YYYY-MM-DD hh:mm.ss.ssssss	XX.XXXX	XX.XXX	XX.X	X.X	Мх	D	$20 \le R \le 50$	N≥4	Mixx	X.XX	XXXX; XXXX	A1	3
YYYYMMDDhhmmxx	YYYY-MM-DD hh:mm.ss.sssss	XX.XXXX	xx.xxx	XX.X	x.x	Mx	D	$20 \le R \le 50$		XXXX ≠ Mixx	X.XX	XXXX; XXXX	A2	3
YYYYMMDDhhmmxx	YYYY-MM-DD hh:mm.ss.ssssss	XX.XXXX	XX.XXXX	XX.X	X.X	Mx	D	R≥50					A3	3
YYYYMMDDhhmmxx									N < 4	Mixx	X.XX	XXXX; XXXX	BO	0
YYYYMMDDhhmmxx	YYYY-MM-DD hh:mm.ss.ssssss	XX.XXXX	XX.XXX	XX.X	X.X	Mx			N≥4	Mixx	X.XX	XXXX; XXXX	B1	1
YYYYMMDDhhmmxx	YYYY-MM-DD hh:mm.ss.ssssss	XX.XXXX	XX.XXX	XX.X	X.X	Mx			N≥4	Mixx	X.XX	XXXX; XXXX	B1	2
YYYYMMDDhhmmxx	YYYY-MM-DD hh:mm.ss.ssssss	XX.XXX	XX.XXX	XX.X	X.X	Mx			N≥4	Mixx	X.XX	XXXX; XXXX	B1	3
YYYYMMDDhhmmxx						0				XXXX ≠ Mixx	X.XX	XXXX; XXXX	B2	3

Tabella 3. Elenco delle possibili occorrenze derivanti dall'applicazione dei criteri di classificazione illustrati in Tab.2. ID_Detector: codice identificativo del trigger: To: tempo origine; Lat, Lon, h: latitudine, longitudine e profondità dell'evento; Mag, T-Mag: valore e tipo di magnitudo; D, R: distanze epicentrale e ipocentrale da Minerbio (punto C di Fig.2); N: numero di coppie di fasi dirette P ed S, osservate alle stazioni della RSIMS; XXXX (MIxx): nomi delle stazioni della rete RSIMS (RMMS). I parametri di localizzazione e magnitudo (colonne 2-6) vengono stimati riportando i dati contenuti nel catalogo della RSN (campi indicati in colore) o rilocalizzando gli eventi mediante SacPicker (campi indicati in nero).

Gli eventi sismici registrati dalla RSIMS nel periodo 1/7/2018-30/9/2018 sono riportati in Tab.4. Si tratta di 43 terremoti localizzati all'esterno del dominio esteso di rilevazione. 40 di essi sono presenti nel catalogo della RSN e sono caratterizzati da distanze ipocentrali maggiori di 30 km e profondità generalmente superiori a 5 km. Sono presenti 2 eventi di magnitudo locale 2.2 e 2.1, localizzati rispettivamente a 2.7 e a 3.5 km di profondità. Il più vicino (M_L = 2.1) è stato localizzato nel Ferrarese, a 33 km da Minerbio. Come di vede dalla Tab. 4, i 3 eventi non contenuti nel catalogo nazionale sono stati classificati come eventi esterni al dominio esteso. In base ai criteri di classificazione introdotti si tratta infatti di eventi sismici con primi arrivi P osservati a stazioni che non appartengono alla RMMS, anche se alcuni di essi vengono osservati da qualche stazione della rete stessa.

ID_Detector	То	Lat	Lon	h (km)	Mag	T-Mag	D (km)	R (km)	Num. coppie di fasi S; P	Nome prima stazione	S-P prima stazione (s)	Nome prime 2 stazioni successive	Tipologia evento	Classe evento
							da Minerbio	da Minerbio	RSIMS	RSIMS	RSIMS	RSIMS		
20180701073232	2018-07-01 07:32:16.680000	44.1803	10.5480	14.2	3.6	ML	90	91					A3	3
20180701073905	2018-07-01 07:38:47.330000	44.2212	10.5708	10.0	2.9	ML	86	87					A3	3
20180701081026	2018-07-01 08:10:07.770000	44.2087	10.6138	16.4	2.8	ML	84	86					A3	3
20180701105950	2018-07-01 10:59:26.560000	44.2110	10.5630	12.9	2.1	ML	87	88					A3	3
20180701154558	2018-07-01 15:45:40.750000	44.1973	10.5567	13.7	2.3	ML	88	89					A3	3
20180701180838	2018-07-01 18:08:21.570000	44.2043	10.5562	14.5	2.4	ML	88	89					A3	3
20180701190251	2018-07-01 19:02:34.630000	44.1960	10.5612	13.8	2.8	ML	88	89					A3	3
20180701234133	2018-07-01 23:41:17.920000	44.1793	10.5422	13.3	3.0	ML	91	92					A3	3
20180702124052	2018-07-02 12:40:29.550000	44.4418	12.3418	24.7	2.5	ML	71	75					A3	3
20180704090247	2018-07-04 09:01:08.979000	41.4475	19.5630	14.6	5.1	Mb	745	745					A3	3
20180708125044	2018-07-08 12:50:11.320000	44.5117	10.2078	21.4	1.7	ML	102	104					A3	3
20180722041630	2018-07-22 04:16:04.060000	44.7693	10.6962	7.6	1.9	ML	64	64					A3	3
20180722101242	2018-07-22 10:07:26.400000	34.4500	46.1300	10.0	5.8	Mw	3154	3154					A3	3
20180726012702	2018-07-26 01:26:46.910000	44.7627	12.6418	73.3	2.1	ML	92	118					A3	3
20180811032800	2018-08-11 03:26:58.860000	46.3282	13.0243	11.1	3.0	ML	224	224					A3	3
20180811033115	2018-08-11 03:30:38.780000	46.3275	13.0247	12.6	3.6	Mw	224	224					A3	3
20180811154017	2018-08-11 15:38:35.573000	41.5389	20.0513	18.2	5.2	MD	//6	//6		5500	1.0	1440.05514	A3	3
20180811232511	2040.00.40.04.40.40.54000	40.5700	40.0000	7.5			400	40.0	6	FERS	1.8	MI10; SERM	82	3
20180812214401	2018-08-12 21:43:16.54000	43.5700	12.0993	7.5	2.8	ML	128	128		420.04	4.0	CMDO: MI40	A3	3
20180813200442	2010 00 1 4 21 40 20 0 00000	44.0077	44.0407	40.0	4.0		400	40.0	8	A308A	4.0	CMPO; MI10	BZ AD	3
20180814214920	2018-08-14 21:48:30.980000	41.00//	14.8407	19.2	4.0	IVIW	408	408					A3	3
20100815092759	2018-08-15 09:27:22:7 30000	40.7 192	14.9649	10.6	2.3	Mar	123	123	<u> </u>				A3	3
20100810102002	2018-08-16 20:22:34 780000	41.0/42	14.0040	19.0	0.1	Max	411	411	<u> </u>				A3	3
20180818123141	2018-08-18 12:30:57 030000	41.0000	9.8187	8.1	2.4	MI	134	412					A3	3
20180819003832	2018-08-19 00:19:38 750000	-18 0773	-178.0660	574.2	8.1	Mwod	16950	16960					A3	3
20180821003345	2018-08-21 00:33:45 610000	44 7033	10.6638	8.1	3.7	May	68	68					A3	3
20180821010732	2018-08-21 01:07:06 780000	44,7858	10.6560	2.7	2.2	MI	68	68					A3	3
20180821132609	2018-08-21 13:26:04 460000	44 9157	11 4317	3.5	2.1	MI	33	33	4	FERS	2.6	MI10: A307A	A2	3
20180821234250	2018-08-21 23:31:41.289000	10.6664	-62.8945	105.5	7.0	Mwpd	7952	7953	-				A3	3
20180830033411	2018-08-30 03:33:05.071000	44.0402	16.5674	9.8	4.8	mb	178	178					A3	3
20180831130340	2018-08-31 13:03:17.670000	43.9880	12.8890	33.3	3.5	Mw	132	136					A3	3
20180905014211	2018-09-05 01:41:59.070000	44.3633	10.7927	22.2	2.3	ML	62	66					A3	3
20180906160814	2018-09-06 17:49:17.816000	-18.4711	179.4420	647.7	7.7	Mwpd	16917	16929					A3	3
20180907203702	2018-09-07 20:35:04.000000	43.4500	17.2500	8.0	4.0	ML	479	479					A3	3
20180909032309	2018-09-09 03:22:48.420000	44.4053	10.7367	26.4	2.0	ML	65	70					A3	3
20180910063226	2018-09-10 06:32:00.100000	44.0655	11.8492	32.0	1.8	ML	68	75					A3	3
20180911215755	2018-09-11 21:57:13.780000	42.9475	13.1785	7.6	3.6	ML	231	231					A3	3
20180915031004	2018-09-15 03:09:14.000000	43.8000	15.7500	10.0	4.2	ML	352	352					A3	3
20180915080123	2018-09-15 08:01:16.390000	44.8788	11.2867	6.3	2.2	ML	33	33	3	RAVA	4.3	SERM; CAVE	A2	3
20180919095501	2018-09-19 09:54:41.480000	44.1837	11.7838	20.2	2.5	ML	54	57					A3	3
20180923161730	2018-09-23 16:17:05.050000	44.0437	11.8698	26.6	1.8	ML	71	76					A3	3
20180929070248									3	RAVA	4.1	CAVE; A307A	B2	3

Tabella 4. Eventi sismici registrati dalla RSIMS nel periodo 1/7/2018-30/9/2018 (cfr. didascalia di Tab.3 per la descrizione dei campi).

Figura 14. Eventi sismici localizzati registrati dalla RSIMS nel periodo 1/7/2018-30/9/2018. Vengono mostrati gli eventi con distanza epicentrale da Minerbio minore di 50 km. Cerchi rossi pieni: eventi con profondità maggiore di 11 km; cerchi arancione: eventi con profondità compresa fra 5 e 11 km; cerchi gialli: eventi con profondità inferiore a 5 km. I triangoli mostrano la posizione delle stazioni della RSIMS (cfr. didascalia di Fig. 5 per la descrizione della tipologia di sensore installato). La sigla delle stazioni viene indicata solo per le installazioni esterne a DE. In figura vengono mostrate anche la proiezione in superficie del contorno dei volumi DI e DE (in rosso e in blu rispettivamente); la proiezione in superficie del GWC (area in giallo) e la traccia C-C' di Boccaletti et al. (2004) (linea blu tratteggiata).

2.4 Conclusioni

Per quanto riguarda il monitoraggio sismico, le attività condotte da INGV-MI durante il terzo trimestre 2018 nell'ambito del Protocollo Operativo per la sperimentazione degli ILG per il monitoraggio della concessione *Minerbio Stoccaggio*, siglato da MiSE, RER e Stogit S.p.A nel Maggio 2016, hanno evidenziato i seguenti punti:

- 1) La verifica dei livelli di rumore sismico ambientale registrato dalle stazioni della rete nel periodo 1/7/2018 – 30/9/2018, effettuata mediante il software PQLX (USGS, 2018), conferma l'elevata rumorosità dell'area di monitoraggio. Fra le stazioni installate in superficie, MI01 e MI02 mostrano valori di PSD paragonabili a quelli della curva di riferimento NHNM di Peterson (1993) mentre MI03 e MI06 si rivelano più rumorose, con livelli di PSD superiori di circa 10-15 dB. La MI04, nonostante sia installata in pozzetto a 100 m di profondità, risulta comunque caratterizzata da livelli di rumore paragonabili e quelli della curva NHNM nella banda di frequenze 1-20 Hz. Nella medesima banda di frequenze la variazione giorno/notte si attesta mediamente attorno a circa 25 dB. Le stazioni dotate di sensori installati in pozzetto a 150 m di profondità, mostrano invece livelli di rumore più contenuti. Per frequenze > 1 Hz, i livelli misurati durante il giorno si attestano mediamente attorno a 115 dB per MI08 e MI10 e a -110 dB per MI05, con variazioni giorno/notte pari a circa 10 dB.
- 2) L'analisi della sismicità registrata nel periodo 1/7/2018 30/9/2018 è stata condotta con particolare riferimento ai volumi crostali individuati dal Dominio Interno e dal Dominio Esteso di rilevazione. Mediante un sistema di trigger off-line basato su un algoritmo di tipo STA/LTA sono stati individuati 225 eventi. 43 di essi sono risultati essere effettivamente eventi sismici mentre i rimanenti sono stati catalogati come segnali transienti causati da disturbi di natura antropica o rumore ambientale. In particolare, nei giorni: 23/7/2018; 24/8/2018; 25/8/2018 e 8/9/2018, sono stati rilevati transienti in coincidenza su 3/4 stazioni della RMMS, causati da sorgenti poste in superficie.

Gli eventi sismici riconosciuti sono stati classificati operando una prima suddivisione fra terremoti inclusi nel catalogo della RSN (40 eventi) e terremoti non inclusi nel medesimo (cfr.Tab.4). I primi sono stati poi riesaminati suddividendoli ulteriormente in base alla distanza ipocentrale da Minerbio, R, ed eventualmente considerando le stazioni della RSISM che hanno registrato i primi arrivi della fase P. I secondi sono stati suddivisi considerando le stazioni che hanno registrato i primi arrivi P e il numero di coppie di fasi P ed S osservate. L'applicazione dello schema di classificazione così definito (cfr. Tab.3) ha permesso di procedere alla eventuale rilocalizzazione degli eventi sismici riconosciuti e conseguentemente alla loro eventuale collocazione nei domini di rilevamento. In definitiva, i 43 eventi registrati nel terzo trimestre 2018 sono stati così suddivisi:

- 38 eventi inclusi nel catalogo della RSN caratterizzati da R ≥ 50 km e quindi esterni a DE (tipologia evento: A3);
- 2 eventi inclusi nel catalogo della RSN con (20 ≤ R < 50) km e con primo arrivo della fase P osservato ad una stazione non appartenente alla rete microsismica e perciò classificati come eventi esterni a DE (tipologia evento: A2);
- 3 eventi non inclusi nel catalogo della RSN e con primo arrivo della fase P osservato ad una stazione non appartenente alla rete microsismica e perciò classificati come eventi esterni a DE (tipologia evento: B2).

Gli eventi localizzati a distanze ipocentrali minori di 100 km e inclusi nel catalogo della RSN hanno profondità comprese fra 2.7 e 32.0 km. Le magnitudo locali sono comprese fra 1.8 e 3.7. In un raggio di 50 km da Minerbio si trovano 2 eventi, entrambi localizzati nel Ferrarese a 33 km di distanza ipocentrale, caratterizzati da (M_L = 2.1; h=3.5 km) e (M_L = 2.2; h=6.3 km), rispettivamente (cfr. Fig.14).

Come di vede dalla Tab.3, nel caso di un evento ritenuto localizzabile la procedura di classificazione adottata produce eventi appartenenti a DI (classe 1); appartenenti alla parte di DE non inclusa in DI

(classe 2) o esterni a DE (classe 3). Nel secondo trimestre 2018 tutti gli eventi registrati sono risultati di classe 3 e quindi esterni ai domini di rilevazione definiti nell'ambito del Protocollo Operativo.

3. Monitoraggio delle deformazioni del suolo da stazioni GPS in continuo

3.1 Aggiornamento della soluzione geodetica

In questa sezione vengono descritti i risultati ottenuti dall'aggiornamento dell'analisi dei dati registrati dalla stazione GPS MINE della Stogit, installata nel sito di stoccaggio di Minerbio (BO). I dati sono stati processati utilizzando software scientifico che garantisce le più elevate precisioni e la serie temporale di spostamento, definita in un sistema di riferimento globale internazionale, è stata analizzata al fine di stimare diversi parametri. I dati GPS della stazione MINE (Fig. 15), assieme a quelli delle altre stazioni attive sul territorio nazionale (Fig. 16) sono stati elaborati fino al 30 settembre 2018 (day-of-year, doy, 273/2018), utilizzando la stessa procedura descritta nell'allegato B della Relazione Trimestrale N.1 (INGV, 2018d).

Figura 15. Posizione della stazione GPS di Minerbio (cerchio blu) rispetto al perimetro del giacimento (linea rossa) e dei pozzi (cerchi bianchi).

Figura 16. Posizione della stazione di Minerbio (in giallo) rispetto ad altre stazioni GNSS attive in Italia settentrionale ed afferenti a diverse reti (si veda Devoti et al., 2017).

3.1.1 Analisi della qualità del dato

I dati RINEX giornalieri della stazione MINE sono stati analizzati con il software TEQC (http://facility.unavco.org/software/teqc), che rappresenta uno standard internazionale per il trattamento in fase di pre-processamento di dati GPS e per la valutazione della loro qualità. A questo scopo, gli indici principalmente utilizzati sono i seguenti (in parentesi sono indicati i valori riscontrati su stazioni di buona qualità):

MP1: root mean square (RMS) dato dai multipath sulla fase L1, ossia dovuto a riflessioni del segnale radio inviato dai satelliti che influiscono sul corretto calcolo della distanza satellite-ricevitore (0.1-0.5 m);

MP2: RMS dato dai multipath sulla fase L2 (0.1-0.5 m);

Prendendo come riferimento la rete IGS dell'International GNSS Service (http://igscb.jpl.nasa.gov), il 50% delle stazioni IGS ha valori di RMS per MP1 inferiori a 0.4 m e valori di MP2 inferiori a 0.6 m, mentre 2/3 delle stazioni ha valori di MP1 inferiori a 0.5 m e di MP2 inferiori a 0.75 m. In Fig. 17 è mostrato l'andamento nel tempo dei valori di MP1 e MP2 della stazione MINE nell'intervallo di tempo considerato in questa analisi: 1 gennaio 2008 - 30 settembre 2018. I valori di MP1 e MP2 anche per il periodo a cui si riferisce l'aggiornamento presentato in questo report (1/5/2018 al 30/9/2018) sono mediamente inferiori a 0.3.

In generale, quindi, i valori di MP1 e MP2 dei dati analizzati indicano una stazione di buona qualità. Inoltre, la stazione MINE mostra anche nel periodo analizzato in questo report una ottima continuità del dato.

Figura 17. Andamento dei valori di MP1 (in nero) e MP2 (in rosso) ottenuti dall'analisi dei dati RINEX della stazione MINE con il software TEQC fino al 30/9/2018.

3.1.2 Elaborazione dei dati e serie temporale di spostamento

I dati giornalieri in formato RINEX sono stati analizzati seguendo la stessa procedura descritta in dettaglio nella precedente relazione (INGV, 2018d). Per questo aggiornamento i dati sono stati elaborati con il software GAMIT/GLOBK nella sua versione più recente, la 10.70 (http://geoweb.mit.edu/gg/). In Fig. 18 è mostrata la serie temporale nel sistema di riferimento IGb08 (Rebischung et al., 2011), aggiornata al 30 settembre 2018. La stazione MINE è stata analizzata in una sottorete che include le stazioni appartenenti alla rete FOGER della Regione Emilia-Romagna (http://www.gpsemiliaromagna.it), alcune stazioni afferenti alla rete Europea EUREF (http://www.epncb.oma.be) e alcune stazioni afferenti alla rete commerciale Leica-ITALPOS (http://smartnet.leica-geosystems.it). Le stazioni EUREF, in particolare, sono quelle poi usate per combinare le soluzioni di questa sotto-rete con quelle delle altre sotto-reti elaborate all'INGV. La sottorete è stata quindi elaborata seguendo le procedure descritte nel precedente rapporto (INGV, 2018d).

La serie temporale mostrata in Fig. 18, è stata modellata, come nel precedente rapporto, usando il seguente modello funzionale, che descrive la variazione della posizione della stazione GPS nel tempo, x(t) come:

$$f(t_i) = a_1 + a_2 t_i + a_3 \sin(2\pi t_i) + a_4 \cos(2\pi t_i) + a_5 \sin(4\pi t_i) + a_6 \cos(4\pi t_i) + \sum_{j=1}^{n_b} b_j H(t_i - T_b) + y_t$$
[1]

dove $a_1+a_2t_i$ rappresenta il trend, a_1 è il bias iniziale, a_2 indica la pendenza della serie, cioè la velocità di spostamento, $a_3\sin(2\pi t_i)+a_4\cos(2\pi t_i)+a_5\sin(4\pi t_i)+a_6\cos(4\pi t_i)$ è la componente stagionale (annuale e

semi-annuale, con t_i espresso in anni), la sommatoria $b_jH(t_i - T_b)$ rappresenta invece la correzione per un certo numero n_b di offset di ampiezza b_j descritti tramite una funzione gradino di Heaviside. Anche eventuali salti provocati da eventi co-sismici sono modellati con una funzione di questo tipo. Infine y_t rappresenta la componente casuale.

Come evidenziato nella precedente relazione (INGV, 2018d), la stazione GPS di Minerbio ha registrato lo spostamento co-sismico associato alle scosse principali della sequenza sismica in Emilia Romagna del 2012. Gli offset sono stati calcolati usando le posizioni calcolate pochi giorni prima e pochi giorni dopo i due mainshock del 20 e 29 maggio 2012. E' stato inoltre evidenziato un transiente di deformazione post-sismica, la cui considerazione, nella modellazione della serie temporale di spostamento, è di fondamentale importanza per una accurata stima della velocità tettonica.

3.1.3 Stima della deformazione post-sismica e calcolo delle velocità aggiornate

Il transiente di deformazione post-sismica è stato modellato assumendo un andamento nel tempo (t) di tipo esponenziale, descritto da:

$$A[1-exp(-t/Tau)]$$
[2]

Dove A rappresenta l'ampiezza e Tau è il tempo caratteristico del decadimento post-sismico. Data la vicinanza temporale dei due mainshock, per questa stazione abbiamo assunto che la deformazione postsismica sia descritta da un solo valore di A e di Tau, che sono stati stimati utilizzando un approccio nonlineare ai minimi quadrati, attraverso la funzione Isqcurvefit di Matlab. In Tab.5 sono riportati i valori stimati per l'ampiezza e per la costante di decadimento.

La Fig.18 mostra l'andamento della serie temporale di spostamento nel sistema di riferimento IGb08 (cerchi blu) aggiornata al 30 settembre 2018, dove in rosso è mostrato il modello, ottenuto adottando [1] e [2].

La Fig.19 mostra invece la serie temporale residua, dopo aver rimosso il trend lineare, gli offset cosismici e il transiente post-sismico, mentre in Fig.20 viene mostrata la serie temporale ottenuta dopo aver rimosso anche le componenti stagionali (cfr. Tabs.6 e 7).

In Tab.8 sono indicate le velocità orizzontali e verticale, nel sistema di riferimento IGb08, ottenute utilizzando la serie temporale di spostamento fino al 30 settembre 2018. Relativamente alle incertezze, queste sono state stimate assumendo un modello di tipo White+Flicker noise, come descritto in Serpelloni et al. (2013).

Figura 18. Serie temporale di spostamento della stazione MINE nel sistema di riferimento globale IGb08 ottenuta stimando anche l'ampiezza di un segnale esponenziale nella fase post-sismica. Le linee grigie indicano le barre d'errore (1 σ). La linea rossa rappresenta il modello, come definito in [1] e [2].

Figura 19. Serie temporale residua della stazione MINE dopo aver rimosso gli offset co-sismici e il trend lineare, come definito in [1], ed il segnale post-sismico, come definito in [2] e Tab.5. Le linee grigie indicano le barre d'errore (1 σ). La linea rossa rappresenta il modello per la componente stagionale, con periodo annuale e semi-annuale, come definito in [1] (cfr. Tabs.6 e 7).

Figura 20. Serie temporale residua della stazione MINE dopo aver rimosso anche le componenti stagionali (annuale e semi-annuale), rispetto alla serie di Fig. 19.

	E	Ν	Up
A (mm)	-1.82	5.712	-9.95
Tau (year)	0.3	0.42	0.47

Tabella 5. Ampiezza (A) e costante di decadimento (Tau) del segnale post-sismico (descritto come in [2]) registrato dalla stazione MINE a seguito del mainshock del 20 maggio 2012 per le componenti East (E), Nord (N) e verticale (Up).

Е	E N		S_N	V	S_V
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
1.447	5.448	0.038	0.045	3.313	0.147

Tabella 6. Ampiezza della componente annuale (in mm) per le componenti est (E), nord (N) e verticale (V), e rispettive incertezze (S_E, S_N e S_V).

E	N	S_E	S_N	V	S_V
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
0.187	0.363	0.039	0.044	0.557	

Tabella 7. Ampiezza della componente semi-annuale (in mm) per le componenti est (E), nord (N) e verticale (V), e rispettive incertezze (S_E, S_N e S_V).

VE	VN	S_VE	S_VN	S_VN Vup S			
(mm/anno)	(mm/anno)	(mm/anno)	(mm/anno)	(mm/anno)	(mm/anno)		
21.882	18.905	0.097	0.222	-0.868	0.316		

Tabella 8. Velocità di spostamento, e relative incertezze, della stazione MINE (in mm/anno) nel sistema di riferimento IGb08. VE, VN e Vup indicano le velocità nelle componenti est, nord e verticale, rispettivamente, e S_VE, S_VN e S_Vup le relative incertezze.

3.2 Conclusioni

I dati della stazione GPS di Minerbio, gestita da Stogit ed installata al margine meridionale del perimetro del giacimento di Minerbio, sono stati elaborati fino al 30 settembre 2018. Il processamento dei dati RINEX è stato eseguito utilizzando i più elevati standard di analisi, come descritto nella precedente relazione (INGV, 2018d). In particolare, l'aggiornamento è stato fatto utilizzando una nuova versione del software di analisi dati. In particolare, rispetto alla precedente relazione sono stati stimati, per ogni singola componente, il valore della costante di decadimento e dell'ampiezza di un segnale esponenziale rappresentativo del transiente di deformazione post-sismica, osservato a seguito del mainshock del 20 maggio 2012.

La stazione MINE si conferma come caratterizzata da un'ottima continuità del dato, oltre che da valori dei parametri MP1 e MP2, rappresentativi di disturbi da multipath, in linea con le migliori stazioni GPS permanenti analizzate all'INGV.

I valori dei tassi di spostamento nelle tre direzioni, E, N e Up, ottenuti dall'analisi delle serie temporali di spostamento aggiornati al 30 settembre 2018 sono del tutto consistenti con quelli stimati nella relazione precedente (INGV, 2018d). Anche il valore del tempo di decadimento del segnale post-sismico è in linea con quanto presente nella recente bibliografia scientifica (e.g. Cheloni et al., 2016; Nespoli et al., 2018).

La serie temporale di spostamento mostra un andamento stagionale con periodo annuale, la cui ampiezza massima è osservata nella componente nord (~5 mm). In particolare, è evidente come il segnale stagionale nelle componenti orizzontali sia in opposizione di fase, indicando uno spostamento in direzione NNW-SSE con periodo annuale, con intensità comparabile a quella misurata nella componente Nord, essendo quella predominante. Tuttavia, è evidente che se da un lato un semplice modello rappresentato da una sinusoide di periodo annuale sia sufficiente a descrivere la stagionalità nelle componenti E e Up, sulla componente N ci sono variazioni di ampiezza che richiedono ulteriori analisi.

Bibliografia

AlpArray (2016). The AlpArray initiative, <u>http://www.alparray.ethz.ch/home/</u>

- Boccaletti M., Bonini M., Corti G., Gasperini P., Martelli L., Piccardi L., Tanini C., Vannucci G. (2004). Carta sismotettonica della Regione Emilia Romagna, 1:250.000 e note illustrative. SELCA Editore, Firenze.
- Cattaneo M., D'Alema E., Frapiccini M., Marzorati D., Monachesi G. (2011). Acquisizione presso la sede di Ancona, *Miscellanea INGV*, 10, 124-127, ISSN 2039-6651.
- Cheloni, D., R. Giuliani, N. D'Agostino, M. Mattone, M. Bonano, G. Fornaro, R. Lanari, D. Reale, and S. Atzori (2016), New insights into fault activation and stress transfer between en echelon thrusts: The 2012 Emilia, Northern Italy, earthquake sequence, *J. Geophys. Res. Solid Earth*, 121, 4742–4766, doi: 10.1002/2016JB012823.
- Earthworm Central (2016). Earthworm, http://www.earthwormcentral.org/
- INGV, Istituto Nazionale di Geofisica e Vulcanologia (2016). Il progetto AlpArray, <u>http://terremoti.ingv.it/it/struttura-</u> <u>di-ricerca/lda-t1-geodinamica-e-interno-della-terra/33-contenuti/983-il-progetto-alparray.html</u>
- INGV, Istituto Nazionale di Geofisica e Vulcanologia (2018a). Progetti e convenzioni Progetto: Sperimentazione ILG Minerbio Stoccaggio – Codice progetto: 913; Codice CUP: D81I18000300004, <u>http://istituto.ingv.it/it/progetti-e-convenzioni</u>
- INGV, Istituto Nazionale di Geofisica e Vulcanologia (2018b). Protocollo Operativo Attività di sperimentazione degli indirizzi e linee guida per il monitoraggio della concessione "Minerbio Stoccaggio" (MiSE/RER/Stogit S.p.A.). Concessione di stoccaggio di gas naturale Minerbio Stoccaggio (BO). Struttura Preposta al Monitoraggio – Anno di esercizio 2018 – Relazione Trimestrale N.1, Giugno 2018, Milano, 14 pp.
- INGV, Istituto Nazionale di Geofisica e Vulcanologia (2018c). Protocollo Operativo Attività di sperimentazione degli indirizzi e linee guida per il monitoraggio della concessione "Minerbio Stoccaggio" (MiSE/RER/Stogit S.p.A.). Concessione di stoccaggio di gas naturale Minerbio Stoccaggio (BO). Struttura Preposta al Monitoraggio – Anno di esercizio 2018 – Relazione Trimestrale N.1 – Allegato A, Giugno 2018, Milano, 41 pp.
- INGV, Istituto Nazionale di Geofisica e Vulcanologia (2018d). Protocollo Operativo Attività di sperimentazione degli indirizzi e linee guida per il monitoraggio della concessione "Minerbio Stoccaggio" (MiSE/RER/Stogit S.p.A.). Concessione di stoccaggio di gas naturale Minerbio Stoccaggio (BO). Struttura Preposta al Monitoraggio – Anno di esercizio 2018 – Relazione Trimestrale N.1 – Allegato B, Giugno 2018, Milano, 15 pp.
- INGV, Istituto Nazionale di Geofisica e Vulcanologia (2018e). Protocollo Operativo Attività di sperimentazione degli indirizzi e linee guida per il monitoraggio della concessione "Minerbio Stoccaggio" (MiSE/RER/Stogit S.p.A.). Concessione di stoccaggio di gas naturale Minerbio Stoccaggio (BO). Struttura Preposta al Monitoraggio – Anno di esercizio 2018 – Relazione Trimestrale N.2, Settembre 2018, Milano, 23 pp.
- INGV-CNT, Istituto Nazionale di Geofisica e Vulcanologia Centro Nazionale Terremoti (2018a). Italian Seismic Network, <u>http://cnt.rm.ingv.it/instruments/network/IV</u>
- INGV-CNT, Istituto Nazionale di Geofisica e Vulcanologia Centro Nazionale Terremoti (2018b). Lista Terremoti, http://cnt.rm.ingv.it/
- INGV-MI, Istituto Nazionale di Geofisica e Vulcanologia Sezione di Milano (2017a). Protocollo Operativo Attività di sperimentazione degli indirizzi e linee guida per il monitoraggio della concessione "Minerbio Stoccaggio" (MiSE/RER/Stogit S.p.A.). Concessione di stoccaggio di gas naturale Minerbio Stoccaggio (BO). SPM - Monitoraggio Sismico – Anno di esercizio 2017 – Relazione N.01, Maggio 2017, Milano, 46 pp.
- INGV-MI, Istituto Nazionale di Geofisica e Vulcanologia Sezione di Milano (2017b). Protocollo Operativo Attività di sperimentazione degli indirizzi e linee guida per il monitoraggio della concessione "Minerbio Stoccaggio" (MiSE/RER/Stogit S.p.A.). Sintesi rapporto Monitoraggio Sismico Anno di esercizio 2017 Relazione n.01 con integrazione relativa a monitoraggio deformazione del suolo e della pressione di poro, Luglio 2017, Milano, 4 pp.
- INGV-MI, Istituto Nazionale di Geofisica e Vulcanologia Sezione di Milano (2018a). Protocollo Operativo Attività di sperimentazione degli indirizzi e linee guida per il monitoraggio della concessione "Minerbio Stoccaggio" (MiSE/RER/Stogit S.p.A.). Sintesi dell'attività svolta nel periodo Luglio-Dicembre 2017 nell'ambito del Protocollo Operativo, Gennaio 2018, Milano, 3 pp.

- IRIS Incorporated Research Institutions for Seismology (2018a). SeedLink, http://ds.iris.edu/ds/nodes/dmc/services/seedlink
- IRIS Incorporated Research Institutions for Seismology (2018b). Data Formats, https://ds.iris.edu/ds/nodes/dmc/data/formats/
- McNamara D.E., Buland R.P. (2004). Ambient Noise Levels in the Continental United States, *Bull. Seism. Soc. Am.*, 94, 1517-1527.
- MiSE–DGS-UNMIG, Ministero dello Sviluppo Economico Direzione Generale per la Sicurezza anche ambientale delle attività minerarie ed energetiche – Ufficio Nazionale Minerario per gli Idrocarburi e le Georisorse (2014). Indirizzi e Linee Guida per il monitoraggio della sismicità, delle deformazioni del suolo e delle pressioni di poro nell'ambito delle attività antropiche, <u>http://unmig.mise.gov.it/unmig/agenda/upload/85_238.pdf</u>
- MiSE-DGS-UNMIG, Ministero dello Sviluppo Economico Direzione Generale per la Sicurezza anche ambientale delle attività minerarie ed energetiche - Ufficio Nazionale Minerario per gli Idrocarburi e le Georisorse (2017). Titoli Minerari Vigenti, concessione di stoccaggio "Minerbio Stoccaggio", http://unmig.mise.gov.it/unmig/titoli/dettaglio.asp?cod=2907
- Nespoli, M., Belardinelli, M. E., Gualandi, A., Serpelloni E., Bonafede, M. (2018), Poroelasticity and fluids flow modeling for the 2012 Emilia Romagna earthquakes: hints from GPS and InSAR data, *Geofluids*, doi: 10.1155/2018/4160570
- Rebischung, P., J. Griffiths, J. Ray, R. Schmid, X. Collilieux, and B. Garayt (2011), IGS08: the IGS realization of ITRF2008, GPS Solut, doi:10.1007/s10291-011-0248-2.
- RER, Regione Emilia-Romagna (2016a). Deliberazione della Giunta Regionale 11 Aprile 2016, N.488. Schema di Protocollo Operativo – Attività di sperimentazione degli indirizzi e linee guida per il monitoraggio della concessione "Minerbio Stoccaggio", BURERT n.125 del 04.05.2016, <u>http://bur.regione.emiliaromagna.it/dettaglio-inserzione?i=c12c12b691bf4807864dde86e77f8664</u>
- RER, Regione Emilia-Romagna (2016b). Deliberazione della Giunta Regionale 11 Aprile 2016, N.488. Schema di Protocollo Operativo Attività di sperimentazione degli indirizzi e linee guida per il monitoraggio della concessione "Minerbio Stoccaggio", BURERT n.125 del 04.05.2016 ALLEGATO 1 ALLA DGR N.488, <u>http://bur.regione.emilia-romagna.it/bur/area-bollettini/bollettini-in-lavorazione/maggio-periodico-parte-seconda-1a-quindicina.2016-05-03.3588733174/schema-di-protocollo-operativo-attivita-di-sperimentazione-degli-indirizzi-e-linee-guida-per-il-monitoraggio-della-concessione-minerbio-stoccaggio/allegato-1-alla-dgr-n-488-del-.2016-05-03.1462281488</u>

Peterson (1993). Observation and modelling of seismic background noise, U.S.G.S. Tech. Rept., 93-322, 1-95.

- Serpelloni, E., C. Faccenna, G. Spada, D. Dong, and S. D. P. Williams (2013), Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary, J. Geophys. Res., 118(11), 6003–6024, doi:10.1002/2013JB010102.
- Spallarossa D., Ferretti G., Scafidi D., Pasta M. (2011). Picking automatico nella rete sismica dell'Italia Nord-Occidentale (RSNI), *Miscellanea INGV*, 10, 141-146, ISSN 2039-6651.
- USGS United States Geological Survey (2018). PQLX: A Software Tool to Evaluate Seismic Station Performance, <u>https://earthquake.usgs.gov/research/software/pqlx.php</u>